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Aeronautics and Space Administration, George C. Marshall
Space Flight Center, under NASA Contract NAS 8-20305.
The work was administered under the direction of the
Dynamic Analysis Branch, Aeroballistics Division,

NASA-MSFC with Mr. Mario H. Rheinfurth as Technical

Director.

This report covers work conducted from 1 April
1966 to 1 April 1967 under the direction of Mr.
Nicholas C. Szuchy, the principal investigator and

Miss Janet Guthrie.



hah 2

L

ABSTRACT

This report presents a method for searching
through a particular defined ordered space for
that subset of systems satisfying the given re-
guirements. It has resulted in the definition
of a generalized technique for synthesizing systems
using network concepts to structure the problem
and the digital computer for calculating the
element values. This concept is a direct approach
to the optimization problem for it requires the
enumeration of all possible systems within the
ordered space satisfying the specifications. The
optimum configuration, dependent upon the criteria,

is then selected from among the calculated systems.
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SECTION I

INTRODUCTION

The synthesis of systems has classically been an under-
taking in which there is much art as well as science. For
any given set of requirements, vastly different systems may be
devised that provide a good fit within a defined tolerable

error. The particular system proposed by a designer may be

- somewhat fortuitous, in that it is not within human capability

to examine even a significant fraction of those systems which
might prove suitable. Thus the need for a method of system
synthesis that is»suitable for machine programming as shown
in Figure I-1 rests on the requirement for assurance that the

end result may reasonably be called optimum.

The prime guestion in attempting to deéise such a method
cf synthesis is: "In what manner may an order be imposed on
the topological region containing all possible solutions, such
that the development of the system may be undertaken according
to logical rules?" Thus the first phase of work under this
contract was an investigation to define a limited space of

this region in such a way that operations within the space
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could be developed that are suitable for expanded use.

Considerations on the analysis and/or synthesis of systems
leads naturally to the geometry of the interconnection pattern
between its various discrete subsystems. These definable char-
acteristics which constitute the system, readily lend themselves
to matrix formulation and solution by digital computers; the
system abstraction is definable both graphically and algebrai-
cally. 1In general then, the problem of synthesizing a linear
system may be characterized as one 0Of determining the connec-
tion geometry for a collection of discrete subéystems that will
satisfy requirements determined: a) experimentallyv, by a set
of observed values, or b) analytically by a system of integral-
differential equations or a transfer function. Stated another
way, system synthesis is the determination of a particular sub-
set of configurations from that set which satisfies the re-
quirements. This non-unique aspect of synthesis as shown in
Figure I-2 allows for the determination of the satisfyving set
from yet a still larget set contained in the ordered region of
all possible definable interconnection patterns of interest.
Attention was confined to the two dimensional region shown in

Figure I-2. That such a space was not unduly rostrictive 1is
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indicated by the number of distinct arrangements of components
that are possible within this space: 8,388,607. Upon imposingA
const:aints such that only physically realizable systems were
produced an estimated 4000 distinct patterns were formed accord-
ing to machine-programable rules. From these, 110 topological
configurations were determined to be basic, i.e., non-reducible
and non-redundant. Within the space, systems having up to an

180 order characteristic equation may be synthesized.

In summary then, this report presents a method of using
those system characteristics that are definable graphically
and algebraically, yet solveable by digital computer techniques,

to produce a universal system synthesis (design) procedure.

The synthesis procedure, as shown in Figure I-1, begins
when, knowing the order of the characteristic equation, the
Basic Incidence Matrix Summary (BIMS) chart.which is stored in
the computer memory is entered, either at the simplest network
configuration or at a higher-order configuration as reguired
by the system. The parameters of the selected topology are
then fitted to the requirements by a suitable minimization
technique. If after a reasonable number of iterations the

termination criteria remain unsatisfied, a step is taken to

I-4
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the next topological configuration. If the termination criteria
are satisfied, it indicates that a system topological configura-

tion with parameters evaluated has been determined satisfying

the requirements.

Since the method is quite general it may be applied to the
analysis/synthesis in any or several areas of engineering design.
By the repeated application of the iterative procedures large

systems having many interfaces may be developed on the computer

- with a smaller expenditure of engineering manpower. Conseguent-

ly by using the digital computer to determine system configura-
tions, optimum design choices can be made more intelligently at

a lower engineering cost than at present.
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SECTION II

SYSTEM NETWORK TOPOLOGY

This section develops the mathematical model for the
structural or interconnection pattern of a system. The alge-
braic abstraction of the system is then developed in conjunc-

tion with this graphical representation.

Al SYSTEM CONCEPTS

A system as represented in Figure II-1 is cefined as a
collection of discrete component (subsystems) having definable
characteristics which in totality constitute an entity (a sys-
tem) having definable characteristics. The components of a

system may be finite and physically describable, such as

FIGURE II-1. A collection of discrete interc.v: octed
regions, forming a system.

I1-1



hardware; or are less tangible discrete elements (regions) de-
fining an associated functional interaction superimposed upon

a topological structure. Figure II-1 represents diagrammati-

cally the interconnection of the system, where the contact

points are the junction or interfaces between any two regions

R..,R..
133

The associated system network is generated from the mathe-
matical model by two mutually independent characteristics:
(1) an algebraic s;ructure defining the characteristics of the
regions or components superimposed upon (2) the topological
structure defining their interconnection pattern. This model
then allows for an ordered approach to the analysis and synthesis

of systems. Network concepts are applicable to a wide range of

phenomena allowing for immediate generalization and applicability.

B. NETWORK AND GRAPH CONCEPTS

When considering a system from a geometric or tovological
point of view, its graph is of great -importance. The graph
of the system represents its interconnection pattern. Figure
IT-2a represents schematically a system with its intorconnect-
ing paths indicated, and Figure II-3b shows its cov:.sponding

graph. From the diagram it may be noted that the «: :nh is

I1-2




found by replacing each of the system elements by directed lines,

with each line connecting two vertices or nodes. A branch is a

FIGURE II-2. a) System schematic and b) its .raph.

directed line segment of a graph, including its two scrtices,

as shown in Figure II-3. Its length or curvature .- no

II-3
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meaning; only the nodes it connects are important. Each branch

o+ (originating node)

(terminating node)

FIGURE II-3. Branch "a", showing its originating
.and terminating nodes.

of the network may consist of the elemental parts of the svstem,

or a complex combination of elemental parts. In drawing a graph

all energy sources are removed, with the "across" variables
(potential difference, relative velocity, pressure difference,
etc.) being replaced by a closed path (a short - i.e., a line
segment having no direction associated withAit) and the
"through" variables (current, force, volume flow rate, etc.)

heing replaced by an open path (i.c., no line segment)

Each branch in the node space set connects exactly two
nodes. A particular interconnection of branches is that subset
of the node space, which represents graphically the intercon-

nection pattern of the system under consideration. To alge-

I1T-4
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braically specify the incidence or connectivity relationships

of the graph, a matrix is defined such that each element has

the value of -1, 0, or +1. Depending upon the basic definition,
two fundamental matrices are found; 1) the branch-node incidence
matrix and 2) the branch-mesh incidence matrix. A one-to-one
cbrrespondence exists between the rows and columns of the matrix
and the branch and the nodes or meshes of the graph. The branch-
node incidence matrix A and the branch-mesh incidence matrix C

are duals, and are related to each otherby the fundamental

relationship II-1.
caT = acT = o (I1-1)
As a simple demonstration of the above Equation (II-1),
consider the three-loop five-branch network graph shown in
Figure II-3. By the appropriate matrix formulation and multi-

plication the null matrix is found as indicated in Equation II-1.

BRANCHES BRANCHES

v[2]3]4]s 1 Ta]3]4]S

Sl -+ o-10 ?hifi « oo o0
A. —— (__: S-—-—

:a-lllOl mizflo=-t { 1 ©

8|30 O~ | -1 gal_oo-lo\

FIGURE II-4. Three-loop five-branch network graph and its
associated branch-node incidence matrix A and
its branch-mesh incidence matrix C.
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The mathematical aspects- of the network graph are related
through its topological properties defined in terms of the cut-
set and circuit matrices. A cut-set of a particular network
graph N of b branches and n nodes in the p X g node space set
is a minimal subset of the branches of N whose removal separates
N into exactly two connected subnetwork graphs Ns and Né having
no common nodes. A cut-set matrix A = (qib) is any matrix whose

rows are cut-set vectors oy -

A circuit of a particular network graph N of b branches
and n nodes in the p x g node space set is a subset of branches
that, together with their end points, form a simple closed curve.
A circuit matrix B = (fyp) is any matrix whose rows are circuit

vectors .

The above two matrices lead directly to the two fundamental

generalized laws of system-network graphs (generalized Kirchhoff

laws):
I. The product of any circuit vector B8 and any across
vector V is equal to zero. (8V = 0).
IT. The product of any cut-set vector » and any through
vector I is equal to zero (aI = 0).

I1-6



It is felt that the development of the basic topological
concepts necessary for the manipulation and description of the
system graphs will be enhanced by a side-by-side consideration

of the particular example shown in Figure II-5.

FIGURE II-5. Three-loop eight-branch network graph.
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4) The branch, through matrix
Iy, is transformed into the
across matrix Vi, by pre-
multiplying by the trans-
formation branch matrix

Zpr
5) Defining the column matrix
e , each of whose elements

gives the total across
matrix sources in a loop,
the characteristic im-
pedance of the system may
now be defined as

Z = BZp B8 where Z,. is a
diagonal matrix defining
the individual branch
impedances.

6) The characteristic imped-
ance for the particular
system configuration con-
sidered may be determined
by matrix multiplication
as shown.

C. NETWORK EQUATIONS

23

[v) = od (1 (11-5)
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€e 7 BV, (I11-6)
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For a generalized n-degree of freedom linear dynamic system,

the eqguations of motion using the Laplace transform

be written in the form:
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Fl(s),FZ(S)...F3(S) represent the forcing or disturbing functions
applied to the generalized coordinates Xl(S),Xz(S),...X3(S) with
impedance functions being at most a quadratic of the form

Mij52 + Bijs + Kiq, where the coefficients have positive real
values (zero included). Without losing any generality, since

the principle of superposition applies, only one forcing function

is considered in the subsequent development, with all the others

being equal to zero. The above equation may then be written as

B-EN | (11-10)

where

L)
LA
"

°© (II-11)

In the frequency domain the elements Zij of [2Z] are in general
complex impedance functions, where
2 L-j represents loop self-impedance functions (11-12)

i

(#j represents loop mutual-impedance functions.

h

Therefore, the response of the xt generalized coordinate may

be determined in the S-plane as:

II-10
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“and the forcing function contribution across an impedance in

the Kth loop is:

fo® Fuxg (I1-14)

resulting in a transfer function:

e o M2 _
+ > T(8) = -—-‘-21—- (II 15)

where |Z| is the determinant of the characteristic equation of
the system and ]M! is its minor, formed by cancelling that
column which belongs to the generalized coordinate of interest,
and that row which corresponds in Equation (II-10) to the

expression with the non-zero left side.

The determinant of the characteristic impedance developed
in Equation (II-7) is identical to the one in Equation (II-13).
Therefcre the development of the impedance function from the
network-topological point of view yields the same result as
the development ffom a system of integro-differential equations.
The admissible branch impedance considered in the development
from the topological aspects is at most a quadratic in form

for the diagonal matrix [Zpy]

II-11
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- D. SYSTEM ALGEBRA (MANIPULATION)

()

() (d)

FIGURE II-6. System schematic, its graph and mechanical
and electrical equivalents.

Figure TI-6 shows four different system representations

having thc same characteristic as Equation II-16.
(MS' 4D, S+ K+ D, 5+ KD = {1y S+ K X 2 [ (242D -21'] X,
- (D84 KD (M54 40,5+ K2 DaS +K3) | | X, -7, (zfgyj X

I1-12
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The incidence or connectivity relationships in matrix form for
the system are

a) branch-node
A= 1 -1 - (I1-17)
1 1

b) branch-mesh

C = \ 10} (II-18)

Since Equations II-17 and II-18 are duals of each other it may

be noted that
U oy =t I~ ={{1 o © o
Il B T I3 S U S o S SR W I O I L Y o (II-19)

Let it now be assumed that the system topology shown in
Figure II-6b is a subset of a slightly larger topology consist-

ing of 3-meshes and 5-branches as shown in Figure II-7.

S33!

Figure II-7. 3-mesh 5-branch topology.

IT-13
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The incidence matrix for this particular network is given by

Equation 11-20

{ + © o o©
c= o -t 1 t o (I11-20)
o o- O |

It is now possible to determine the particular topological subset

shown in Figure II*+6b from the larger topology in two different

ways as shown in Figure II-8a and b.

3
3
Lo 3 ——
- — =
[ED\h:;) ra;zj
|

)

FIGURE II-8. Two topological subsets of a 3-mesh
5-branch topology.

As may be noted from Figure II-8a that the network of interest
contains branches 1, 2 and 3 and meshes 1 and 2, therefore the
incidence matrix describing this configuration may be formed

by collapsing the general rectangular incidence array by multi-
plying the columns containing branches 4 and 5 and row contain-
ing mesh 3 by zero to form Equation II-18. On the other hand,

I1-14
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if the network of interest is as shown in Figure I1-8%, the
branches are 1, 2 and 5 and mesh 1 and ancther mesh generated
by combining meshes 2 and 3, therefore the incidence matrix
describing this configuration may be generated by collapsing
the general incidence array by multiplying columns containing

.. ~chos 9 ( - T Zer H H i i S L . i ) 1
branches 3 and 4 by zero and adding rows 2 and 3 to again form equation

he characteristic impedance 1is found by matrix multiplica-
tion as shown in Equation II-21 which is identical to Eguation

IT-16.

(z,~Z) -2,
Z.CZ, = (I1-21)
-7, (Z*23)

In the more generalized concept it 1s readily seen that bot
configurations are feasible in generating the regquired 2 me
3-branch topology, and therciore to
it is necessary to define onc ot ti
a bhasic configuration (subset) and oxcltude the othor

o aan b
RS Rt

:
S

wwrthoer consideration rosulting in i ‘Cvoin thie Rasic

Incidence Matrix Sammary, (Scarch) chart.




SECTION IIT

ORDERED SPACE

The concept of the ordered topological space as presented
in the previous Sections I and II introduces the associated
task of defining the appropriate search mode through this

space for determining topologies satisfying a transfer function

of the general form:

.

n .
T %o Nis (<) (I11-1)
" .
z b;s!

i

This section considers in detail the development of the Basic
Topologies from the more general one defined in Figure III-1,

and defines the required search pattern through the space.

3 A 723
|

- | e 3 5
FIGURE ITII-1. Ordered 3 x 3 node space.
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A. TOPOLOGICAL CONFIGURATION

When considering a system synthesis problem it is important
to define an ordered region in which to search for those inter-
connection patterns that will provide acceptable structures for
interpretation. As noted in Section I, three (3) loop by three
(3) loop space was conceived as a region of more than adequate
complexity to demonstrate the approach on small systems. As
shown in Figure III-1, there is a definite order and pattern
associated with both the vertical and horizontal branches, and
also with the loops. Thé horizontal branches are all defined
as odd numbered branches, while the vertical branches are de-

fined as even numbered branches.

The general concept of the ordered space defines a problem
uniqgue to itself: Determine an optimum search path through
this space such that a topology satisfying Equation III-1 may
be found. Recall that any topological subset formed from the
3 X 3 node space that satisfies Equation III-1 is a solution
to the system synthesis problem. Any topological subset which

satisfies the laws of formation is called a possible topological

configuration. Any possible topological configuration which

satisfies the restrictions imposed by the particular node space

being considered is called a feasible topological configuration.

I11-2




Any feasible topological configuration which 1s a fundamental

(unique) subset of the particular node space being considered,

and to which other feasible configurations may be reduced, 1is

called a basic topological configuration. The search mode

through the space then, is defined in terms of an ordered pro-

gression through the basic topological configurations. Table

III-1 summarizes the 96 forms of mesh combination for generating

. the feasible topological configurations.
B. LAWS OF FORMATION
‘ Considering the specific 3 x 3 node space previously de-

fined in Figure III-1, the laws of formation for the possible
topological configurations up to and including 3 loop networks,

are formulated using the following logic symbols and notations:

EE Ma = represents the meshes associated with node
£ space (for a 3 x 3, a =1,2,3...,9)

Ly = represents the various loops of interest associated
with the node space, and consists of one or more
meshes

2 @ = logic symbol representing "or"

5 - = logic symbol representing "and"

1 (_) = logic symbol representing 'not"

E % = symbol used to indicate more than one combined
; nre "or" operation

'@ » . .

T = symbol used to indicate more than one corined "and"

nue operation.

ITI-3




TABLE III-1

POSSIBLE MESH COMBINATIONS

Possible Mesh
No. of Loops Combinations Mesh Combinations

1 9 1,2,3,4,5,6,7,8,9

2 20 (11,12,13,141,15,16,17,18)
(22,23,24,25,26,27)
(33,34,35,36)(44,45)

3 23 (111,112,113,114,115,116,117)
(122,123,124,125,126)
(133,134,135) (144)

. (222,223,224,225) (233,234) (333)

4 18 (1111,1112,1113,1114,1115,1116)
(1122,1123,1124,1125) (1133,1134)
(1222,1223,1224) (1233)(2222,2223)

5 12 (11111,11112,11113,11114,11115)
(11122,11123,11124) (11133)
(11222,11223)(11133)

6 17 (111111,111112,111113,111114)
(111122,111123) (111222)

7 4 (lllllll,1111112,1111113)(1111122)

8 2 (11111111,11121112)

9 1 (11131131111)

I11-4



These logic laws may be programmed on the digital computer to
define the basic topological space that will be used in the

general search program for synthesizing the system.

1l Loop

r

LLi :lvj]<] (]_,2,3,41516/71819)
This represents an almost trivial case where for any topological

configuration there exists only one basic topology Ll = Ml'

Y

2 Loop
Lu,tsl=IM M, Mg M MM MM, M)
(lw- pl®lk-gl® Jk-ri® lk-sle ikt i@ k-al® k- vid jk-wl) 2(; p-qi@lp-ri@lp- si®lp-tie|p-ule) F-v\a\pwb
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*(1s-tiolcul@ls-viols-wa (1t-ul@\t-vi® Lt-wi) * Llg-¢) © Yu-wi; > (lv-wi) =

which may be written in a shortened form as
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CLods [MKM MM MgM M, M, M
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3 Loop
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C. BASIC INCIDENCE MATRIX SUMMARY (BIMS)

From the larger population of configurations as generated
from the particular ordered 3 x 3 node space of Figure III-1,
110 were defined as being basic configurations, for a two port
three terminal topology. The Basic Incidence Matrix Summary
(BIMS) chart, Figures III-2 and III-3 presents in a form
readily programmable for computer application the 110 basic
networks to be used sequentially in the search for systemati-
cally synthesized ‘systems satisfying specification sets. The
generalized branch-mesh incidence matrix (lower right hand
corner) is stored in the computer memory banks. A particular
basic incidence matrix is generated by collapsing the general-
ized array according to the rules defined by the column of
branch entries and the row of mesh entries, as modified by

the combinational laws.
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SECTION IV

SYSTEM SYNTHESIS

This section is expository in nature, since it demonstrates

the approach and techniques shown in Figure I-1 for synthesiz-
2 ing a particular system. It is assumed that the over-all trans-
fer function for the required system is known and is a stable

E and rational function and is of the form:

-

Nl

o S {(ntm)

i (Iv-1)

S . TQ(":) x

m,‘
[ Nl
3
o
w

- SR Dl
P

It is also assumed that the denominator is of order m such that
there exists at least one topological subset within the 3 x 3

node space that will satisfy it. It is now postulated that,

Pl . auihic A tatiaet)

a) the search through the node space is at the network configura-

tion 8, or b) it is starting at configuration 8.

A. DEVELOPING A NODE SPACE TRANSFER FUNCTION

RO U e

i Step 1. From the BIMS chart III-2 it may be construed
that it is the three loop, 5 branch interconnection configura-

tion shown in Figure IV-1 superimposed on the 3 x 3 node space.

v

Iv-1
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FIGURE IV-l. Interconnection configuration of basic topology
number 8 and a portion of the generalized
incidence matrix.

In forming the particular incidence array of interest let it

be defined that the literal "a" represents branch number 8;

therefore the basic topology is defined in terms of meshes 1,

2, 4 and 5 with the included branches 2, 4, 7, 8 and 9. The

first stage of the collapsed incidence array for network 8 1is

shown in Figure IVv-2 (still retaining original definitions of

branches and nodes).

)

Gi o] —
]
}
!

l

}
1
L
-
n

IPIGURE IV-2. First stage of defining incidence array
for topology number 8.
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Step 2. If two or more meshes define a loop as indicated
by the symbolism My o+ Mj + ... + MK on the side of the table,
then it is necessary to add the required rows of the array to
form the particular loops of interest. In this case it 1is nec-
essary to add the 3rd and 4th rows (meshes 4 and 5) together

forming a 3 X 5 matrix shown in Figure IV-3. (It is not nec-

essary to remember any of the meshes or branches because they

2lal7]elo
] { |

FIGURE IV-3. Second stage of defining incidence matrix
for topology number 8.

are unique to the 3 x 3 node space and can always be determined) .
If two or more meshes are not combined to form a loop - Step 2

is not required.

Step 3. The characteristic equation (impedance) of the

system can be determined by matrix multiplication.

z:12,1 (1v-2)

Iiv

|
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F

where

F ' 01 OO
-l L OO
O O-t-1-) (IV-3)
resulting in
(21*‘27) Zl "._7 l
27 ‘Zg_ (23'24* Zx)\ 'S\) !} (IV_4)
- 24 "2y IR |

"Step 4. To evaluate the matrix and determine the transfer
function of the network, form the expression for the transfer

function
\Z| (IV-5)

where |M| represents the minor of the determinant |Z|, result-
ing from the cancellation of that column which belongs to the
generalized coordinate of interest, and of that row which

corresponds to the particular forcing function of interest.

- £s ~Zy -
N e (2,727
(7,477 -2, - t (Tv-6)
~£y (FfrEEY - E
-4 R D
V-4



Step 5. Form the objective function (here, again, adduced

arbitrarily. '

2L
S (W) =

(‘Q,m - Tl
Tg (W)

(IV-7)

|

Step 6. Initialize the objective function #(y) by postulat-
ing a set of positive values for the coefficients of TN(u). One
such choice of values might be unity for each, as an initial

step.

Step 7. Proceed to minimize the objective function §(.)
by the gradient technique - continue iteration process until the
prescribed minimum is determined or until the appropriate number
of iterations have been completed. If a minimum is reached then
this topology with the calculated values represents a possible
system configuration. If on the other hand a satisfactory mini-
mum was not reached after a predetermined number of iterations,
proceed to basic topology number 9 and proceed in the manner
outlined above. This process is repeated a) until a system
configuration is synthesized or b) until all the possible

system configurations for the specified region have been detexr-

mined.

IvV-5
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SECTION V

NETWORK TOPOLOGY - MECHANICAL IMPEDANCE SYSTEM

This section outlines the procedure for writing the equa-
tions of motion of a coupled mechanical system in terms of its
network parameters. The relationships are developed from

Lagrange's equations with electro-mechanical analogs and im-

pedance concepts.

A

Mechanical-electrical network analogies are founded on a

comparison of Lagrange's equations for two similar systems.

The necessary guantities are the potential and kinetic energy

stored in the two systems and the dissipation, expressed as
functions of a generalized coordinate which in a mechanical

system is the displacement and in an electrical system is the

current.
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Given the two simple systems shown in Figure V-1, the follow-

ing relationships may be written:

1 Electrical Mechanical

Kinetic Energy -r:.% Ll%? T= é M xR (V-1)
3 Potential Energy - .“:‘ZE‘;' (%z. _%J“ V= :12_ K (X, ‘X;):‘) (V-2)
! Dissipation D = R.%f = R kf (v-3)

Lagrange's equations for the generalized coordinates are:

| (AT \- 90‘!’“(9:(3 gm) Tx/)a-'c)()z.
3
: Expanding the eqguations for each of these systems,
: Q (A(FLi ) A KIKRT s ARKS
3 J(z L \)—3(—"-'-T 161 (K30 { Mim ‘)) -2 kixeK3tas IRXE_ A
- "—’—._..—._.....‘_ & 2 'S 2 = KP‘ t L - - V—S
. 'GT:K( %. é%‘ ¢ % u/ s 5%_, % ng 3;‘[ BX < ‘—S; ( )
{ 7 . ~ N s / .
E gm-é ¢ 7 {Gog)’) ro=o géccor; S(ER O a)t) ro= § (v-6)
%" L.x:
or
L%;—LR%ﬂJ.#(%Fgﬂao M§‘+R£IPKCXﬁX‘>=O (V-=7)
V-2




AN DN

< (xg-x,) = /l

(v-8)

A comparison of the coefficients of the above equations

indicates the following

voltage v
charge (¢
current i

capacitance c

inductance L

The corresponding

now be written as shown

analogies:

b

2 RNil= w

impedance of

in Table V-1.

force

displacement

velocity

inverse spring constant

(compliance)
mass

primitive elements may

TABLE V-1
PRIMITIVE ELEMENT IMPEDANCES Z(s)
‘Mechanical Electrical
Fo: kK(kdz = K& Vo= g §<de =Z%
Fu K Ve {
— = ™ Z T = T e
e % s ¢4 cs
Fa ° M&i = Mgx V, = L% = Lgit
dt
- Fu = V,
ZM— ‘2":\ ,AS ZL-:_;:E=L5
Fop = Dx fo - Vg = R< Ve
'2":.—';“: - — =




It should be noted that the number of generalized coordi-

nates (the index n in Equation V-4) is the number of degrees

of freedom of the system. It follows that if mechanical elements

act in parallel to each other as shown in Figure V-2a; that is,
if the forces contributed by them are functions of the same
motion or motions, there is only one degree of freedom and the

appropriate expression is

ML +DX+KX =0 (by Newton's law) (V-9)

oxY 5

(Ms +D+ tk)x =0 (Vv-10)

so that the lumped impedance of mechanical elements acting in

parallel is the sum of their individual impedances.

‘E
K / ( - }
/
YN\
/ | . 4
i q
M 5 | ::> ]‘C
- " .
_F-il_”~_ﬂ—5 { A
/ | 9
] B G
X
FIGURE V-2a FIGURE V-2Db

The analogous electrical circuit is shown in Figure V-2b, where

the expression is

Ldi+ RL+LS,LJt:0
c

e (by Kirchoff's law) (V-11)




or
(LS+R+L.:!;),(: = o (Vv-12)

Figure V-3 shows a simple coupled mechanical system for

which the equations of motion are required.

/,
:’ K Ka Ks {
A - S LEN — T
/ i M, i Ma M /
/] M Ll /;
//; © (PN Ba 4

*FIGURE V-3

The two coordinates needed to describe the state of this system
are Xl and X2, the displacements of the masses from their rest
positions. From the diagram it is clear that the forces which
exist on M; due to the prime elements Ky, Dy and M, are dependent
only on the motion of M ; and similarly the forces on M, due to

K3,D3 and M, are due only to the motion of MQ. The elements K,

and D, exert forces on both My and M2 and the magnitude of these
t; forces are dependent upon the relative motion between the two
%

masses. These relationships suggest the possibility of represent-

ing this mechanical system in terms of the two loop network shown
in Figure V-3, where Zl represents the equivalent mechanical im-

pedance associated with the motion of My Z, the impedance associated

V-5



with the motion of M2 and Zc the coupling impedance associated

with the relative motion between My and M2.

Returning to the example of Figure V-2, the equations for
, can be written by application of

the loop velocities Xy and X
Lagrange's equations

—Dz""s")\’z “ K"
= O (V-13)

Mzs?Ds‘PS‘KS-FDZPé‘Kaj le

or from the lumped-impedance equivalent of Figure V-3,

(V-14)

—*‘

Z,+Z¢ -2
=0

Pc e
N

-2¢ Za+2c

An alternative is provided by noting that V-13 may be written

X,

"045 - K&
(V-15)

"
Q

”/\,Sz+ O, s+k,+U;8 +K,

Mzs24 058 +K3+05+K, (1 X

~-Dzs ~Kz

By re-defining the impedance as the force divided by the dis-

placement,

A sdewr




)

,v\sz -_-'ZMS - Py = — =z 2/’\ (V—l6)

ps Fo ;

Ds =2,s= "5 = X = Zo (Vv-17)
Fro F ,

K = 2,8 = ~5 = 5% 7 2Zx (v-18)

the analogous loop can be drawn directly in terms of displace-

ments X, and X_ and impedances Z'.

2

In summary, the method of writing the dynamic equation of
motion of a coupled mechanical system for network presentation

consists of the following steps:

1) Group parallel elements into equivalent impedances
by summing their individual impedarices (Z'p 27y Zc)
2) Draw the analagous network diagram, being sure there

is a loop and a lumped impedance for each degree of
freedom, with coupling impedances for elements which

are affected by two or more motions.

3) From the impedance network write the loop equations
as for an electrical impedance network.

v-7
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SECTION VI

STATE-VARIABLE TECINIQUES FOR SYSTEM NETWORKS

In the synthesis of linear systems using the network
approach defined in the previous sections, a possible applica-
tion is the design of controllers. This section considers a

transfer function of the form

C) S and"
RE) T byds™

T(S) = (n<my

to determine an applicable topological form, and develop the
transfer function in terms of the state-variables of the

system network.

A. CONSIDERATIONS ON THE STATE~-VARIABLE METHOD FOR NETWORKS
The state-variable description of a system 1is a powerful
technique, in which the value of all the Vafiables which des-
cribe the system behavior at a particular instant of time t
are known. The continuous sequence of points indicating the
values assumed by the states is called the trajectory. A
state or vector is an element which revresents a proverty,
quantity or functional relationship of somcthing. Any system
can be defined in terms of a collection of states or vectors,

called a vector space.

vVi-1
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Schematically, the "black box" shown in Figure VI-1 has a
set of input, state and output variables. The number of state—
variables required to specify the system uniquely 1is determined

by the degrees of freedom, or by the degree of the characteristic

U, —a [~ Y,

'thu'\’ Uy el sTafe vaeciakles o Ya oufpu"’
variobles  uy -]  ~ vy, variables
P ;

N -

FIGURE VI-1. System schematic for state-variable representation

equation of the system. In vector notation the state may be

represented as a 1 x n row matrix.

x@® =L %m0, - -~ ] (VI-1)

Oor as an n x 1 column matrix

p -

% ()
X2 ({)

x® = | (VI-2)

X8
The basic canonic equations of a system describable by a set
of linear differential equations arc of the form:

VI-2

e AT B




1.
"
>
X
+
jod
| Lo

(VI-3a)

1 H - —b (VI‘?)b)

Tl
%
I

where A is the coefficient vector, B is the driving vector, C
is the output vector and D is the transmission vector of the

system.

Example 1: Given the differential equation of the system as:

a

VD +a, uit) va, Dy va vt v 0,00 2 g ult) (VI-4)

specify the state-variables:

Let therefore
X (D) 2w XD T X, B
it » i) 0 XD (VI-5)
X3 () U Xalt)® X4
K (o2 o {1 X (T - Qg X4 (1) - 3, X0 - a % (B~ a %, (B * byul)

To convert the above into matrix form, with Eguation

(VI-5) in expanded form as:

(6
%, {0
X4) 1 x,{t)

X7 = 8% (0 @ A0 - k() - Ay X (D + bou (o

1 X () (VI-6)
l' 7\5&)

o

L}
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Example 1 (continued)

For clarity, it should be noted that the general vector

equation represents a system of equations of the form:

’ 9 p - . ' R ~

X,(H Qu O, Qy---- dn{ |, D Bu By By Gug | [UB

X;('ﬂ Qar 0;; G;ﬁ .= Qgh X;\t) hgl h‘ k"‘s- == b}.n ui.('a

)‘(3“) = | Qar Oy Qg ——~-0y4, Kg(f) + ‘051 bgz hs}" - ‘“3»\ s
! i

] ' ] i ' |

' '
. M [} i
. : Vo ( } Loy : : VI-7)
: ' ' : ' \ ' ' . 1
' '
an(ﬂ- 18 Oy Qg - -G’"’d L xn(ﬂl L hm bnx \"v\s“ ) \’mu L Unli)
that have to be solved.
From Equation (VI-7) it readily follows that:
X, (0 [ © I © o ﬁﬁa c o © ol[o ]
%, (0 © © 1 o | |% 0 0o Oio |
+ i
Xa & O o & | X (D o 0 6 o ; o
%O [ -0, -y ~ag] | Xal® O o O b lul
which may be written in vector form as:
X = Ax-+Bu (VI-8)

vIi-4




Example 1 (continued)

The transfer function in terms of state-variables

may easily be obtained by taking the Laplace trans-

form of Equations (IV-3a) and (VI-3b).

iia*&vay} (VI-8a)

i{l“i—ﬁtwi (VI-8b)

resulting in

SX(9) = X () = A X(a) + Buls) (VI-9a)
X(® = LX)+ Dyl (VI-9D)

manipulating equation (VI-9a) in to a form readily

substituted into (VI-9b)

(s]-A) X&) = Buls) « X(0) _ (VI-10)

X Q) *(SI-AY Busir (6]1-N X () (VI-11)
Therefore equation (VI-9b) becomes

Y@y =clsl _Y‘__g(shg(s;-/\\"}(os + D YS) (VI-12)

Vi-5




Example 1 (continued)

ox

Y (c(sI-AV B+ D) UGS + C(5I-AT % () (VI-13)

For the frequency domain considerations, the initial

conditions are neglected, i.e., X(0) = 0, therefore

the transfer function in state-variable form is

\_{(S‘) . -t
T : DN +c(sI-AVR (VI-14)
- U
‘ B. CONSIDERATIONS ON CONTROL TOPOLOGIES

Three simple examples will be considered, demonstrating

the method of converting from network topology to a control

topology.

Example 2:

x‘xS"-o- b )

FIGURE VI-2. Network diagram of system #1

VI-6
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Example 2 (continued)

C(s)
T(S)= X;c (VI“‘]_S)

R T KSR XS+ Xae

xao/x. 2

S (5 Xu/x.a)
|+ xlo/*u

5( S+ X“/X\:D

The block diagram for the above equation is shown in

Figure (VI-3)

r ¥ e Xao/, K <
SCS+ M, )

FIGURE VI-3. Control block diagram of system #1

Figure VI-3 may bc casily redrawn and the state-
variables defined as shown in Figure VI-4. (Note:
the output of the integrators denote the state-

variables XP).

VI-7
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Example 2 (continued)

X‘zc_

N Xag/ x n I
() - L L
‘3: X ‘ - L | S

FIGURE VI-4. Control system #1 block diagram defined in
of state-variables.

Example 3:

2
XS + Xio

Xy

FIGURE VI-5. Network diagram of system #2

VIi-8
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.Examgle 3 (continued)

_C® %a1S
To: xS~ XS + XS+ Xio
'
Xay/
Kau S+ Kia
- 7& i

X/,
e

The block diagram for the above equation
in Figure VI-6.
+ i <
R % ‘ , —
~ % - TS R,

! 7‘47 X

FIGURE VI-6. Control block diagram of system #2

(Vi-1le)

shown

Figure VI-6 may easily be redrawn and the state-

variable defined as shown in TFigure VI-7.

Vi-9
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Example 3 (continued)

\

Xz2C

XR

FIGURE VI-7.

Control system #2 block diagram defined in terms
of state-variables.

VI-10
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Example 4:

Xy 5+ Xy

Kan S

FIGURE VI-8. Network diagram of system #3

3
T(ﬁ):.._c._(_%z_- Xaa S

RIS T Kyu e XS+ Yo

(VI-17)
r N 7
- - X
1 szz “/’/X:lz
D+ Xu/xn + 5( s Xu}/“a)
L. xﬁ&n_ \ K?&ﬁ;
o %y (5 M)

vIi-11




Example 4 (continued)

1
i~
1]
vi{~
]
T%

FIGURE VI-9. Control system #3 block diagram

A generalization of the control topology that can
be used to represent the poles and zeros of a

system defined by the transfer .function

" B
L <b
Ty, fo B9 (VI-18)

. i
Z bS
3=

is shown in Figure VI-10.
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Example 4 (continued)

Qng

» t+

FIGURE VI-10.

Generalized control system topology

VI-13
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SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

A method for searching through a particuiar defined order-
ed space for that subset of systems satisfying the given require-
ments within that space has been presented. It has resulted in
the definition of a generalized technique for synthesizing
systems using network concepts to structure the problem and the

digital computer for calculating the element values.

The concept of synthesizing systems from graph or topo-
logical considerations was developed in Sections II, IITI and IV
using a quadratic impedance form to define the elements. This
procedure allows for the determination of systems consisting of
non-ideal passive elements, i.e., physically real systems as
compared with the idealized elements déterminéd by classical
synthesis techniques. This concept is a direct approach to
the optimization problem for it requires the enumeration of
all possible systems within the ordered space satisfying the
specifications. The optimum configuration, dependent upon the

criteria, is then selected from among the calculated systems.
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From the studies thét have been completed it is apparent
that further refinements are possible, starting with the
machine expansion of the ordered space in a continuous fashion,
enabling a progressive search for systems satisfying the re-
guirements. The ultimate synthesis procedure as conceived in
this report is one that is completely computer-mechanized from
the input specifications to the output system topology having
realistic component values. Consequently emphasis should be
placed next on defining a programmable search mode for an ex-

panded topology incorporating active elements.
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